Fatigue Models as Practical Tools: Diagnostic
Accuracy and Decision Thresholds

TaomAs G. RASLEAR AND MicuarL COPLEN

RasiEar TG, CorLeN M. Fatigue models as practical tools: diag-
nostic accuracy and decision thresholds. Aviat Space Environ Med
2004; 75(3, Suppl.):A168-72.

Human fatigue models are increasingly being used in a variety of
industrial settings, both civilian and military. Current uses include edu-
cation, awareness, and analysis of individual or group work schedules.
Perhaps the ultimate and potentially most beneficial use of human
fatigue models is to diagnose if an individual is sufficiently rested to
perform a period of duty safely or effectively. When used in this way,
two important questions should be asked: 1) What is the accuracy of the
diagnosis for duty-specific performance in this application; and 2) What
decision threshold is appropriate for this application (i.e., how “fa-
tigued” does an individual have to be to be considered “not safe”). In the
simplest situation, a diagnostic fatigue test must distinguish between two
states: “fatigued” and “not fatigued,” and the diagnostic decisions are
“safe” (or “effective”) and “not safe” (or “not effective”). The resulting
four decision outcomes include diagnostic errors because diagnostic
tests are not perfectly accurate. Moreover, since all outcomes have costs
and benefits associated with them that differ between applications, the
choice of a decision criterion is extremely important. Signal Detection
Theory (SDT) has demonstrated usefulness in measuring the accuracy of
diagnostic tests and optimizing diagnostic decisions. This paper de-
scribes how SDT can be applied to foster the development of fatigue
models as practical diagnostic and decision-making tools. By clarifying
the difference between accuracy (or sensitivity) and decision criterion
(or bias) in the use of fatigue models as diagnostic and decision-making
tools, the SDT framework focuses on such critical issues as duty-specific
performance, variability (model and performance), and model sensitiv-
ity, efficacy, and utility. As fatigue models become increasingly used in
a variety of different applications, it is important that end-users under-
stand the interplay of these factors for their particular application.
Keywords: fatigue models, diagnostic accuracy, decision threshold, sig-
nal detection theory, decision theory, risk management.

THE FATIGUE AND Performance Modeling Work-
shop that was held in Seattle, WA in June 2002
identified three major goals for the workshop: 1) assess
the state-of-the-art of biomathematical models of fa-
tigue, sleepiness, and performance; 2) identify concep-
tual and technological barriers to these models; and 3)
identify and communicate research needs in military
and civilian applications. Although the Workshop was
an overwhelming success in meeting goal 1, little was
accomplished with regard to the remaining two goals.
This paper addresses those goals through a risk man-
agement approach in commercial transportation. Any
model can have numerous uses (and misuses) that de-
pend on the needs of the end-user. The Workshop
participants were primarily scientists who, as end-users
of fatigue models, have very different uses of the mod-
els than commercial operators. Where scientists may
see utility in a model that is a predictive research tool,
commercial operators may see utility in a model that
helps them manage operational risks. Unless such dif-

Ale8

ferences are clarified and understood, fatigue models
are apt to be misused in civilian settings (a conceptual
barrier to models under goal 2). Consequently, civilian
research needs will not be identified and communicated
(see goal 3).

Although fatigue models may be used for a variety of
purposes (education, awareness, analysis of individual
or group work schedules), perhaps the ultimate appli-
cation of any fatigue model may be to diagnose if an
individual is sufficiently rested to perform a period of
duty safely or effectively. The Fatigue and Performance
Modeling Workshop discussed the predictive ability
and accuracy of the models relative to subjective reports
of fatigue or sleepiness and/or neurobehavioral tests of
performance. While this approach is familiar and useful
to scientists, it begs the questions that end-users inter-
ested in practical risk management will ask: 1) What is
the accuracy of the model for performance in my appli-
cation (how well does it distinguish between perfor-
mance degraded by fatigue from performance that is
not degraded); and 2) What decision threshold is ap-
propriate for my application (i.e., what fatigue “score”
indicates that performance is degraded to an unsafe
level). For instance, industry managers will want to
know about model accuracy because they and their
company can be sued if an employee has an accident. If
the decision to allow that employee to work was based
in part on a fatigue model, the accuracy of the model is
important legal evidence that due care was taken (or
not taken) by the manager and company. Managers,
labor representatives, and employees will also want to
know about model accuracy because it affects employ-
ees’ ability to work and be safe. Accuracy will indicate
the extent to which a fatigue model provides a fair,
impartial, and objective assessment of fitness to work
and enhances employee safety. Managers do not want
to disrupt operations because a model with low accu-
racy falsely indicates that a majority of the night shift is
unfit for work. Labor, similarly, does not want to lose
income unnecessarily.
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TABLE 1. OUTCOMES FOR DIAGNOSES GIVEN THE FATIGUE

STATE.
DIAGNOSIS
STATE UNSAFE SAFE
FATIGUED True Positive (TP) False Negative (FN)
NOT FATIGUED False Positive (FP) True Negative (TN)

Management and labor will also want to know what
fatigue score indicates that an employee is too fatigued
to work (i.e., question 2 above), given the accuracy of
the model. If the criterion is too stringent, many em-
ployees will be considered “fatigued” when they are
actually fit to work. But if the criterion is too lenient, the
opposite will happen. Again, it is important for practi-
cal reasons (I may get sued, labor may strike, I may
unjustly lose income, etc.) to decide how much fatigue
is unsafe on a rational basis. For instance, it may be
desirable to use different criteria for different opera-
tions. Employees who work night shifts may be known
to be more fatigued than day shift employees, so a more
stringent criterion may seem reasonable for the night
shift. An operation involving the transportation of haz-
ardous materials through a highly populated area
might also seem to warrant a more stringent criterion
because of the catastrophic consequences of an accident.
But how does one set the decision threshold under
these varying circumstances in a systematic, consistent,
and rational way that will support risk management?
Decision theory (6) provides a variety of methods to
achieve this goal. Among these methods, Signal Detec-
tion Theory (SDT) is used in this paper to illustrate how
end-users who are concerned with risk management
can use fatigue models to diagnose fatigue in a flexible,
defensible, and rational way.

Risk management, by definition, considers the prob-
ability of various decision outcomes and their associ-
ated benefits and costs (3). It will be shown below that,
in the case of fatigue models, the probabilities of deci-
sion outcomes are jointly determined by model accu-
racy and the decision threshold. The decision threshold
is dependent on benefits, costs, and the probability of
various states of the world (e.g., “fatigued” vs. “not
fatigued”). Benefits from the use of fatigue models may
include reducing accidents, increasing operational effi-
ciency, improving employee morale, and improved
scheduling. Costs may include labor disputes, increased
labor costs, and disruptions in service. Different groups
within an industry (e.g., management, labor represen-
tatives, employees) will have different uses for fatigue
models (e.g., risk assessment, collective bargaining, pol-
icy) and different benefits and costs associated with
those uses. Unless end-users understand the utility of
fatigue models for them, it is unlikely that they will use
the models. Worse, they may inappropriately use the
models to set important policy or other related decision
outcomes. For example, it may be quite appropriate for
a particular fatigue model to be used as a decision tool
for ranking the relative risk of various work schedules,
but quite inappropriate to use the output of that same
model to support an absolute fitness for duty decision
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criteria; that is, whether or not an individual should be
allowed to work, given their current state of fatigue.
The following discussion of model accuracy and deci-
sion threshold is intended to illustrate the potential
utility of any fatigue model for a variety of end-users.
The methods described can be applied to any fatigue
model that produces a quantitative output.

In the simplest situation, a diagnostic fatigue test

- must distinguish only between two states: fatigued and

not fatigued, and the- diagnostic outcomes are safe (ef-

- fective) and not safe (not effective). Table I illustrates

the situation.

The models are not perfectly accurate, so diagnostic
errors (false positives, FPs; and false negatives, FNs) are
expected. Moreover, diagnostic fatigue values vary be-
tween and within individuals under the same circum-
stances so that distributions of diagnostic fatigue values
for the “fatigued” and “not fatigued” states overlap
(Fig. 1). Consequently, true positives (TPs) and FPs
covary with varying diagnostic “thresholds” or criteria
(i-e., how “fatigued” do you have to be to be considered
“unsafe”). The outcomes all have costs and/or benefits
associated with them, so the choice of a criterion is
extremely important. This is the type of situation in
which SDT has been extremely useful (2,5), and it is
suggested that an SDT analysis can provide the practi-
tioner with an analytic framework to determine the
accuracy of a model for a specific application and for
determining the most appropriate decision criteria. It
should be noted that although this discussion will as-
sume normal distributions with equal variance for ease
of exposition, this assumption is not critical to the use of
SDT (5).

Diagnostic Accuracy

As a practical matter, the managers of railroads, other
transportation companies, and the military are con-
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Fig. 1. Hypothetical distributions of fatigue scores for fatigued and
non-fatigued individuals. The vertical line at a fatigue score of 1.7 is the
criterion score above which individuals are considered to be unsafe due
to fatigue. The criterion score divides the fatigued distribution into true
positives (to the right of the criterion) and false negatives (to the left of the
criterion), and divides the non-fatigued distribution into false positives
(right of the criterion) and true negatives (left of the criterion).
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cerned with the safe and efficient performance of spe-
cific tasks. Subjective feelings of fatigue or performance
on neurobehavioral tasks do not directly indicate
whether specific workplace tasks will be performed
safely or efficiently. This leap from the laboratory to the
workplace is not trivial. Many jobs are a mixture of
cognitive and physical tasks, and workplaces vary con-
siderably with regard to physical characteristics that
may be conducive to alertness. Consequently, it is im-
portant for the users of fatigue models to know the
accuracy of a model in detecting fatigue-induced
changes in performance in a specific workplace and job.
The ability of a model to detect fatigue may also depend
on the subject population (old vs. young, male vs. fe-
male, etc.), work history (e.g., experienced vs. novice),
and a host of other factors that may limit the generali-
zation of results from one application to others.

In SDT, accuracy is indexed by sensitivity. In general
terms, sensitivity is the difference between the means of
the underlying distributions expressed in standard de-
viation units. For normal distributions, d’ is the sensi-
tivity index, but indices have been devised for other
distributions (1) and for situations where the form of
the distribution is not known (5). Sensitivity is indepen-
dent of the decision criterion, and the outcome of a
decision depends on both sensitivity and the criterion.

The determination of model sensitivity will depend
on the goals of different users of the model. For exam-
ple, a safety officer in a transportation company might
want to reduce accidents caused by fatigue. An opera-
tions officer, on the other hand, might want to improve
operational efficiency (e.g., delivery time, or fuel use).
These different goals dictate the use of different perfor-
mance measures and will result in different model sen-
sitivities.

As an example, the safety officer who wants to reduce
fatigue-caused accidents might sort accidents into two
categories: 1) those for which fatigue can be entirely
ruled out because mechanical or equipment failures are
the primary causes of the accident; and 2) those for
which fatigue is highly suspect because the accident did
not involve a mechanical or equipment failure, but a
memory lapse or inattention were indicated. These two
categories of accidents can be labeled, per Table I, as
“not fatigued” and “fatigued,” respectively. In the rail-
road industry, for example, a rail that breaks under a
car in the middle of the train and causes a derailment is
not likely due to human fatigue. On the other hand, an
accident in which a speed restriction or signal has not
been obeyed are likely due to attention or memory
problems which can be caused by human fatigue.

Given a reasonable set of “fatigue” and “non-fatigue”
accidents, the work-rest records of involved operating
personnel can be collected and analyzed with the
model. It is expected that a range of fatigue scores will
be obtained for operators in both sets of accidents.
However, the mean score for “non-fatigue” accidents
should be lower than the mean score for “fatigue”
accidents. With means and standard deviations for both
sets of accidents, the value of d’ can be directly deter-
mined from
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TABLE 1. COVARIATION OF P(TP), P(FP), AND 8 AS A
FUNCTION OF THE CRITERION FATIGUE SCORE FOR D' = 1

(SEE FIG. 1),
Criterion

Fatigue Score B p(TP) p(EP) Cery p(F)
1.0 0.59 0.84 0.5 —5$740,000 0.16

1.2 1.24 0.58 0.21 —$240,000 0.16

1.4 229 0.27 0.055 —$740,000 0.05

1.6 4.64 0.081 0.0082 —$240,000 0.05

df = M Eq. 1

o

where ur is the mean fatigue score of the “fatigue”
accident operators, uns is the mean fatigue score of the
“non-fatigue” accidents, and o is the common standard
deviation. For example, in Fig. 1, pr = 1.25, uxe = 1.00,
and o = 0.25, so thatd’ = 1.00. In general, the higher the
d’ value, the greater the separation of the distributions
in Fig. 1, and the greater the diagnostic accuracy of a
test.

Decision Criteria

A criterion for deciding what fatigue score indicates
that performance is sufficiently degraded (to an unsafe
state in the case of the safety officer example) can be set
in a variety of ways depending on the decision goals of
the decisionmaker. Several common decision goals in-
clude maximizing expected value, maximizing percent
correct decisions, and satisfying the Neyman-Pearson
objective.* Different model users cannot only have dif-
ferent model sensitivities based on different perfor-
mance measures, but also different decision goals.

As an example, in Fig. 1, the criterion is the vertical
line at a fatigue score of 1.7. Fatigue scores of 1.7 or
higher would be considered “not safe”, as indicated in
the figure. Although sensitivity (d’) does not change as
the criterion is changed, the setting of the criterion does
determine the probability of TPs and FPs [p(TP) and
p(FP)]. Table II shows how p(TP) and p(FP) vary with
the criterion for constant d’. Note that a change in d’
(separation of the distributions) would, independently
of the criterion, also change p(TP) and p(FP).

The criterion fatigue score is determined by the SDT
parameter . 8 is set according to decision goals and
can be calculated from

p(NF) (Brn — Crp)

P= 20 X B - G ka2
where p(NF) is the probability that individuals in the
population under consideration are not fatigued, p(F) is
the probability that individuals in the population under
consideration are fatigued, Br~ and Bre are the benefits
of correct decisions, and Crr and Cen are the costs of
incorrect decisions. If costs and benefits are all equal
and the prior probabilities [p(F) and p(NF)] are also
equal, then B = 1, which indicates an absence of diag-

* This should be familiar to those who have performed statistical
tests. The objective is to hold p(EP) at some fixed level (e.g., 0.05)
while maximizing p(TP).
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TABLE III. PAYOFF MATRIX, 8 = 0.59.

DIAGNOSIS
STATE UNSAFE SAFE
FATIGUED Bre = $220,000 Crn = —$740,000
NOT FATIGUED Cpp = —$100,000 Bry = $10,000

nostic bias. Values of B < 1 indicate a bias to diagnose
unsafe levels of fatigue, while values of 8 > 1 indicate
a bias to diagnose safe levels of fatigue. In Table II, one
criterion score was set with a bias to diagnose unsafe
levels of fatigue. A bias to diagnose unsafe levels of
fatigue corresponds with higher values of p(TP) and
p(FP). In Fig. 1, this means that the criterion score
moves to the left.

According to Eq. 2, an optimal decision requires in-
formation about the probability of fatigue in the popu-
lation under consideration and information about the
benefits and costs associated with the four decision
outcomes in Table L In essence, this is an assessment of
the relative risk of a binary decision (unsafe vs. safe),
where risk (3) is defined as the product of the proba-
bility of an event (fatigued vs. not fatigued) and its
outcome (e.g., an accident). Associating costs and ben-
efits with the cells in Table I results in a “payoff matrix,”
and this device is often used to explicitly summarize the
outcome of a cost-benefit analysis. As an example, Ta-
ble III shows the complete payoff matrix for the first
row in Table II, B = 0.59. It was assumed that the end
user of the model was a railroad safety officer whose
goal was to reduce accidents in a work population
consisting of extra board (on-call) locomotive engineers.

In Table III, the value of Brr is set at $220,000. This
includes a $200,000 benefit associated with avoiding a
fatigue-caused accident, a cost of $20,000 for a labor
dispute based on the decision to declare an employee
“unsafe” due to fatigue, and $40,000 in miscellaneous
benefits such as reduced health costs and more efficient
operations. The value of Crr is the cost of a labor dispute
caused by falsely declaring an employee “unsafe” due
to fatigue when they are actually not fatigued. The
value of Csv includes a $200,000 cost of an accident,
$40,000 in costs associated with less efficient operations
and increased health costs, and a cost of $500,000 due to
damage to the company’s business reputation as a re-
sult of an accident and negative press coverage. The
value of B is the benefit accruing to improvement in
employee morale. It was also assumed that an individ-
ual in this population has a probability of 0.16 of being
fatigued [p(F)], as estimated by the Pollard report (4).

In Table II, for simplicity, the remaining values of 8
were obtained by either changing the value of p(F)
and/or Cen. In practice, all of the costs and benefits
could have been changed. Thus, for 8 = 1.2, Cmv has a
reduced cost because the $500,000 damage to the com-
pany’s business reputation has been removed. All other
cells of the payoff matrix and p(F) remain the same. For
B = 2.22, the payoff matrix of Table III remains un-
changed, but p(F) = 0.05 because of changes in com-
pany policy to allow engineers to refuse a work assign-
ment when they feel fatigued. Finally, for 8 = 4.64, both
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p(F) and Cex have been changed as indicated in Table II.
Clearly, changes in the costs and benefits associated
with decision outcomes and p(F) affect bias, the setting
of the criterion score, and the probabilities of correct
and erroneous diagnoses.

Discussion

The framework of SDT supports the ability of any
quantitative fatigue model to address the goals of var-
ious model users (reduce accidents, improve efficiency,
etc.) and to make optimal decisions based on those
goals. The SDT framework makes explicit the connec-
tion between diagnostic accuracy and the goals of the
model user. This is important because it encourages the
careful and appropriate application of models to spe-
cific situations. The sensitivity of a model applied to
detect unsafe levels of fatigue in combat pilots may not
be the same as the sensitivity of the same model to
detect unsafe levels of fatigue in bus drivers. Even if the
sensitivities are the same, the optimal criterion score
may not be the same, because the outcomes of the
“safe” vs. “unsafe” decision may be vastly different. A
general might risk the loss of an aircraft due to a fa-
tigue-caused accident if the cost of not allowing fa-
tigued pilots to fly was defeat in battle. At the same
fatigue score, however, the manager of a bus company
might consider the crash of a bus a higher cost than the
loss of revenue from a cancelled bus route.

Decisionmakers often have unformulated assump-
tions concerning the costs and benefits of decision out-
comes. SDT encourages the critical examination of those
assumptions to determine if they best serve the goal of
the decisionmaker. For instance, one decision goal is to
maximize percent correct decisions, and many decision-
makers automatically opt for this outcome without re-
alizing that this sets the criterion at the intersection of
the two distributions in Fig. 1 (i.e., B = 1). This then
entails the assumption that p(F) = p(FEN) = 0.5, and that
costs and benefits are all equal. These assumptions are
often not true, and the resulting decisions are not optimal.

Tables II and III demonstrate how changes in esti-
mates of the probability that an employee will be fa-
tigued and changes in estimated costs and benefits as-
sociated with indicating that an employee is unsafe
because of fatigue combine in Eq. 2 to affect the crite-
rion fatigue score. The considerations described here
are, however, not exhaustive. The setting of the crite-
rion fatigue score can be affected by many factors that
influence the elements of Eq. 2. An optimal setting for
the criterion can always be obtained in this way, and
this ensures the usefulness of the decision. For some
work settings, estimates of fatigue probability already
exist. Such estimates need to be improved and tailored
to the specific population under consideration. In the
absence of good estimates, Swets (5) suggests that a
range of values be examined to determine the effect on TP
and FP. Costs and benefits, likewise, can be directly esti-
mated, or a range of cost-benefit ratios can be examined.

The use of any fatigue model can, and should, be as
varied as the specific needs and characteristics of the
users. The value of the SDT framework is that it explic-
itly addresses the issues of sensitivity and bias for dif-
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ferent users. By doing so, SDT forces model users to
define their goals in applying the model and identifies
assumptions concerning the prevalence of fatigue in the
workforce and the costs and benefits associated with
decision outcomes. By making these goals and assump-
tions explicit, SDT can enable the appropriate use of
fatigue models by fully informed decisionmakers.
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